Lignin: Moving Toward Renewable Biobased Adhesives

Mojgan Nejad

Assistant Professor
Sustainable Bioprodutcs Department, Mississippi State University, Email: m.nejad@msstate.edu

Professor (status only)
Mechanical Engineering Department, University of Toronto

Why Lignin?

- Lignin is the second most abundant natural polymer after cellulose on earth (Sustainable)
- Isolated through byproduct of pulp and paper and bioethanol industry
- More than 70 million tons/year lignin are produced every year, but only 2% is used in value-added products.
> Domtar: Kraft Lignin 25,000 tons/year
« POET: Steam explosion 20,000 tons/year
Lignol: Organosolv 20,000 tons/year

Sustainability

Founded in 2011,
The purpose is to develop and implement a global audit program to assess and improve sustainability practices within the supply chains of the chemical industry.

Members of the Sustainability Initiative

BASF, Bayer, Evonik , Henkel, AkzoNobel, Eastman, Merck, Lanxess, Solvay, Syngenta, Clariant, Covestro, IFF, Wacker, Arkema and DSM

Lignin: Natural Polyphenolic Compound

Glazer, A. W., and Nikaido, H. (1995)

Lignin Variations

Lignin is heterogeneous and varies based on the source and isolation processes (Kraft, Organosolv, Lignosulfonate and Steam-explosion).

Softwood

Hardwood

Crops

Lignin Structural Units

Coniferyl
(Guaiacyl)
Softwood
Hardwood
Agricultural-Plants

Sinapyl
(Syringyl)

Coumaryl
(p-Hydroxyphenyl)

Hardwood
Agricultural-Plants Agricultural-Plants

Lignin-Based PF Adhesive

Lignin Characterization

- Chemical analysis using FTIR, ${ }^{31} \mathrm{P}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}$ NMR
- Thermal analysis: Tg using (DSC), degradation (TGA)
- Molecular weight (Mw), number (Mn) and PDI (SEC)
- Moisture content (IR balance, gravimetrically, TGA)
- Ash content (Furnace and TGA)
- Elemental analysis

Properties of Different Lignins

Lignin Samples	S	G	H	Total OH $\mathbf{m m o l} / \mathrm{g}$	Molecular Number	Molecular Weight	PDI
Oraganosolv-HW	1.5	0.8	0.1	4.8	725	1920	2.7
Organosolv-SW	0	1.6	0.1	4.1	750	2100	2.8
Kraft-SW	0	2.3	0.2	6.7	1170	4500	3.8
Steam Explosion Corn Stover	0.6	0.6	$\mathbf{0 . 9}$	5.3	$\mathbf{5 4 2}$	$\mathbf{1 1 5 0}$	$\mathbf{2 . 1}$

31P NMR Results (Hydroxyl Content)

Substituting Phenol in PF Resins

Resin Formulation (with 100\% lignin)

SW lignin-based adhesive dissolved right away

Corn-Stover Ligninbased adhesive after 1-week

Adhesive Formulation

Used a digital high speed mixer to prepare the adhesive (plywood mix).
Viscosity $=2500-3500 \mathrm{cps}$

1. Resin
2. Caustic
3. Water
4. Wheat flour
5. Extender/Filler

Adhesive Properties

Measured Properties	100\% Lignin-based Adhesive	PRF Commercial Adhesive
$\%$ Solid content	$25(0.1)$	$33(0.2)$
pH	12.7	11.8
$\%$ Free Formaldehyde (Titration)	7.5% (resin)	6% (resin)
Curing Temperature $\left({ }^{\circ} \mathrm{C}\right)$	165,203	159,195

Curing of Adhesives (DSC analysis)

Plywood Preparation

Press Parameters (Curing):

- Temperature: $350^{\circ} \mathrm{F}$
- Pressure: 175-200 psi
- Time: 3-3.5 minutes
- Spread rate: $0.12 \mathrm{~g} /$ sample (spread rate about 16 grams on a 12 in $\times 12$ in panel)

Adhesive Lap Joint Shear Test

ASTM D1037 : Evaluating Properties of Wood-Base Fiber and Particle Panel Materials

Lap Shear Strength Test Results

Sample ID	\% Lignin Content	Adhesive Amount (g)	Shear Stress (Psi)	Failure Mode
PRF Commercial Adhesive	0	$0.11(0.03)$	$540(48)$	Wood
100\% lignin-based Resin	100	$0.10(0.01)$	$126(42)$	Adhesive
100\% Lignin-based Adhesive	100	$0.10(0.01)$	$\mathbf{5 0 7 (5 5)}$	Wood

Summary

- Lignin properties differ significantly based on the source and isolation processes
- We were able to formulate a 100% lignin-based adhesive that had excellent water resistancy and similar curing and mechanical strength as of commercial PRF adhesive.

Acknowledgements

- Isal Kalami, PhD student, Sustainable Bioproducts Department, MSU
- Prof. Emma Master, and Maryam Arefmanesh, Chemical Engineering Department, University of Toronto
- Chris Wren, R\&D Laboratory Manager, Hexion
- Natural Sciences and Engineering Research Council of Canada (NSERC), and POET LLC. for funding support

