

HOW TO PREVENT FIRES IN THE PANEL & ENGINEERED LUMBER INDUSTRY 8^{th} – of APRIL 2016 Mikael Jidenius – Area Sales Manager, North America

HYGIENE

TISSUE Mikael Jidenius

PULP & PAPER

Firefly in brief

Industry applications

FIREFLY AB IN BRIEF

- Firefly AB a Swedish company founded in 1973
- A leading supplier of spark detection systems
- Focus on development and design of spark detection systems and preventive fire protection systems for 40 years
- Listed on the NASDAQ/OMX stock exchange in Stockholm
- Head office in Stockholm with agents and distributors worldwide (FNA, Inc. in North America)

Firefly in brief

Industry applications

INDUSTRY APPLICATIONS

Spark detection systems

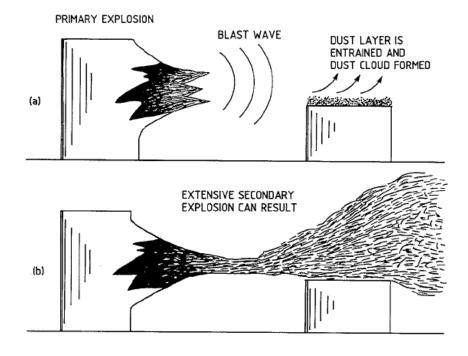
Guard Concepts -Spot Protection Systems

Complete systems with detection, extinguishing and control

FIRE RISKS

In the Panel & Engineered Lumber Industry

DUST EXPLOSION



WHAT IS A SECONDARY DUST EXPLOSION

FIRE RISKS

Still it is not the large incidents that are most costly for the industry;

The high frequency of smaller incidents is even more costly to the industry when adding up the loss production.

GOOD PROCESS DESIGN

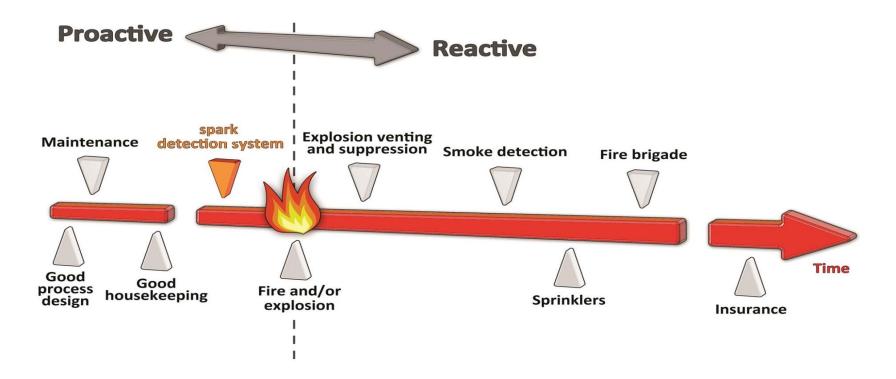
- Minimizing the risk of leakages of dust and fines
- High quality equipment
- Consider distance between fans and inlet for filter

GOOD MAINTENANCE

- Failure in machinery or unbalanced air flow systems will increase the risk for fires and dust explosion
- Performing routine actions to keep the devices in a good condition will not only benefit the production rates
 - It will also lower the risk for fires to start.

GOOD HOUSEKEEPING

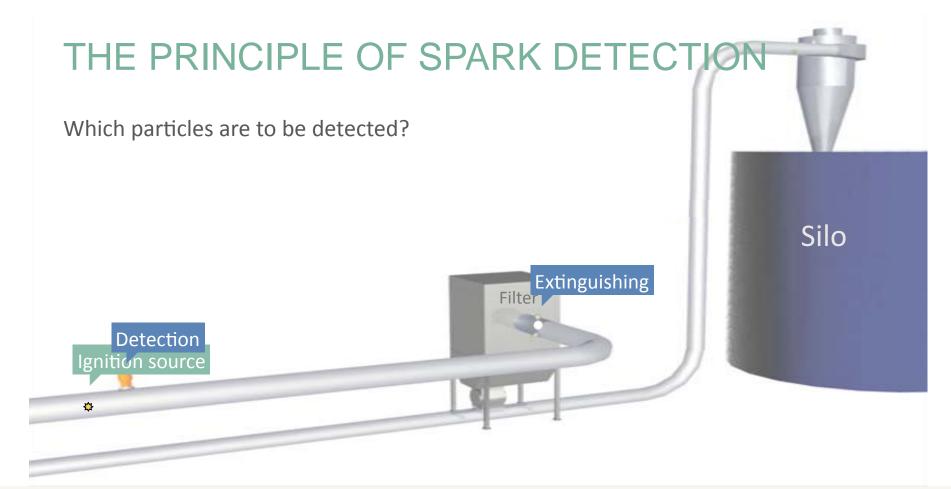
- Make sure you have proper housekeeping procedures
- Make sure accessible areas are kept accessible
- Take care of material blocking etc. in an early stage
- Know your process and which parts where dust accumulations can occur
- Minimizing dust accumulations = Minimizing the risk for secondary explosions!



APPLICATION AND SOLUTIONS

SPARK DETECTION

Principle function of the Spark Detection System



2016-03-29

Mikael Jidenius

TWO VERY IMPORTANT FACTORS IS KNOWING AND **UNDERSTANDING:**

- What is the Minimum Ignition Temperature (MIT)
- What is the Minimum Ignition Energy (MIE)

In the risk analysis of the plant, the MIT and the MIE of the handled material must be tested and verified prior to selecting an appropriate fire prevention system.

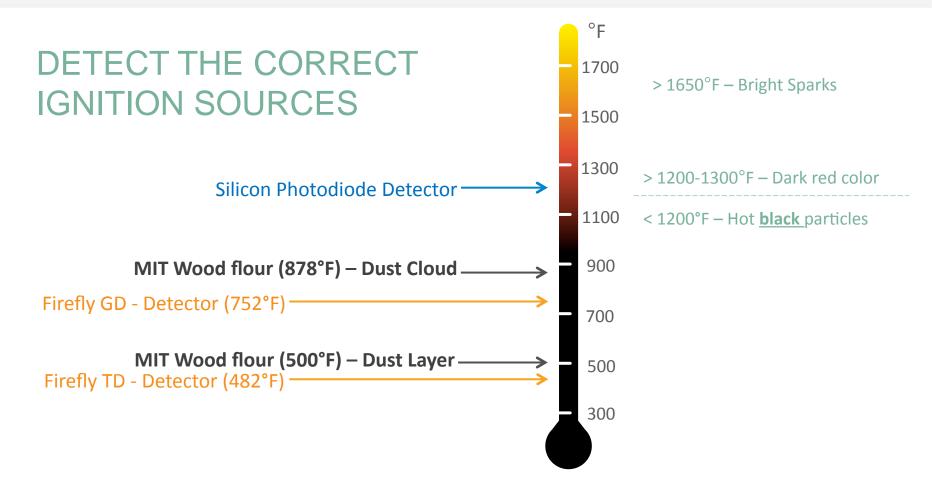
Firefly AB

WHICH PARTICLES ARE DANGEROUS?

TABLE 5-9A. Explosion Characteristics of Various Dusts

(Compiled from the following reports of the U.S. Department of Interior, Bureau of Mines: RI 5753, The Explosibility of Agricultural Dusts; RI 6516, Explosibility of Metal Powders; RI 5971, Explosibility of Dusts Used in the Plastics Industry, RI 6597, Explosibility of Carbonaceous Dusts; RI 7132, Dust Explosibility of Chemicals, Drugs, Dyes and Pesticides; and RI 7208, Explosibility of Miscellaneous Dusts.)

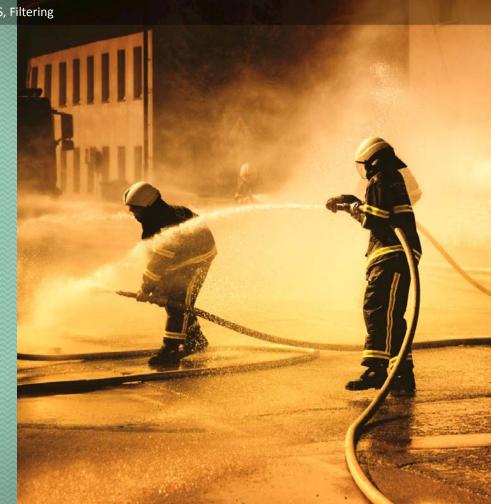
Type of Dust	Explosi- bility Index	Ignition Sensi- tivity	Explo- sion Severity	Maximum Explosion Pressure psig*	Max Rate of Pressure Rise psi/sec*	-0-	tion	Min Clou Ignitic n Energy joules	Limiting	
									Min Explosion Conc oz/cu ft‡	Oxygen Percentage§ (Spark Ignition)
							Layer °C			
Agricultural Dusts										
Cellulose	2.8	1.0	2.8	130	4,500	480	270	0.080	0.055	C13
Cellulose, alpha	>10	2.7	4.0	117	8,000	410	300	0.040	0.045	_
Cocoa, natural 19% fat	0.6	0.5	1.1	68	1,200	510	240	0.10	0.075	_
Coffee, fully roasted	< 0.1	0.2	0.1	38	150	720	270	0.16	0.085	C17
Corn	6.9	2.3	3.0	113	6,000	400	250	0.04	0.055	_
Cornstarch commercial product	9.5	2.8	3.4	106	7,500	400	-	0.04	0.045	-
Cork dust	>10	3.6	3.3	96	7,500	460	210	0.035	0.035	_
Cotton linter, raw	< 0.1	< 0.1	< 0.1	73	400	520	_	1.92	0.50	C21
Cube root, South American	6.5	2.7	2.4	69	2,100	470	230	0.04	0.04	_
Grain dust, winter wheat, corn, oats	9.2	2.8	3.3	131	7,000	430	230	0.03	0.055	_
Lycopodium	16.4	4.2	3.9	75	3,100	480	310	0.04	0.025	C13
Milk, skimmed	1.4	1.6	0.9	95	2,300	490	200	0.05	0.05	N15
Rice	0.3	0.5	0.5	47	700	510	450	0.10	0.085	-
Soy flour	0.7	0.6	1.1	94	800	550	340	0.10	0.06	C15
Sugar, powdered	9.6	4.0	2.4	109	5,000	370	400:	0.03	0.045	_
Wheat flour	4.1	1.5	2.7	97	2,800	440	440	0.06	0.05	_
Wheat starch, edible	17.7	5.2	3.4	100	6,500				0.045	C12
Wood flour, white pine	9.9	3.1	3.2	113	5,500	470	260	0.040	0.035	_


The particle must have:

Enough temperature (MIT for dust cloud) 470°C = 878°F

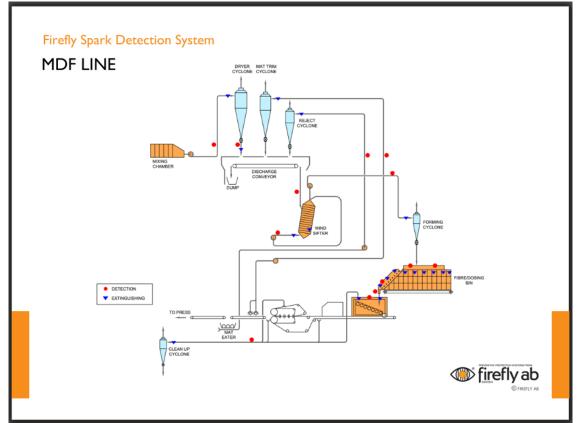
Enough energy (MIE)

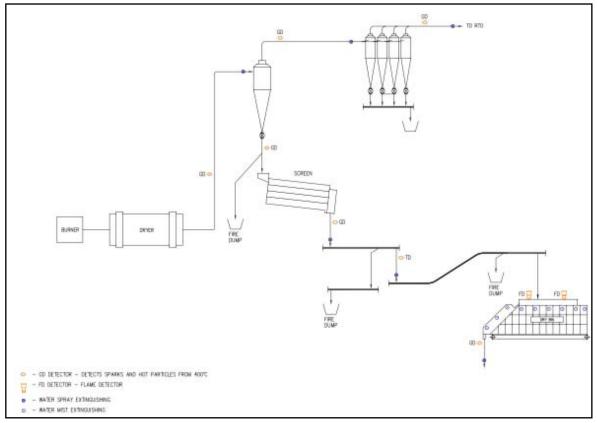
Note that the MIT for dust layer is lower 260°C = 500°F



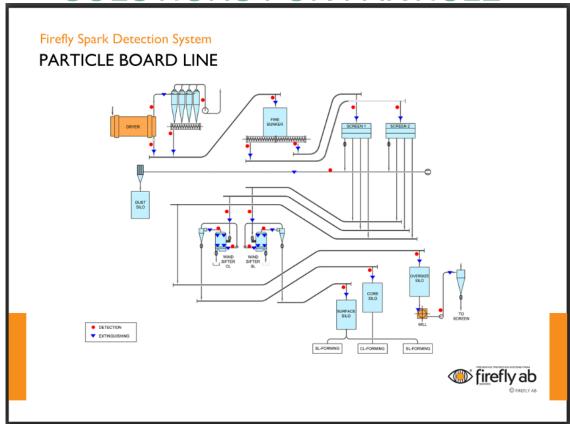
Dryer, Flue gas Sanding, CTS, Filtering General Sifter, Screen Dosing bin, Forming

APPLICATIONS & SOLUTIONS

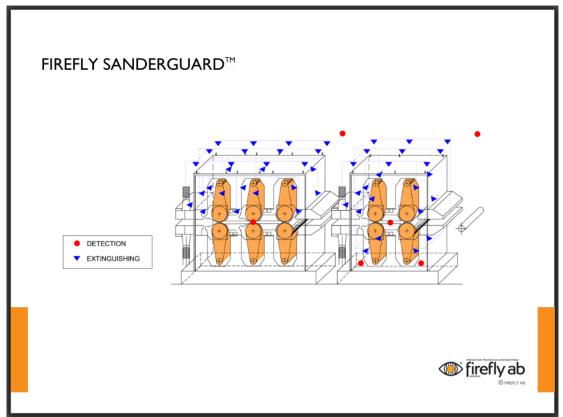




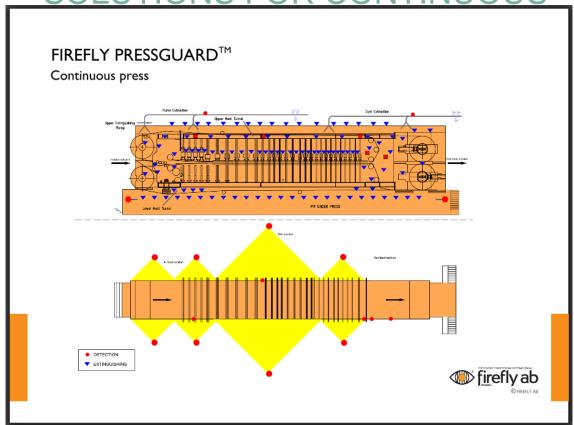
SOLUTIONS FOR OSB LINES

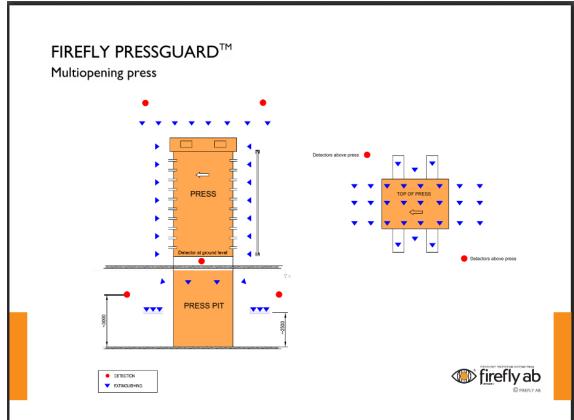


SOLUTIONS FOR PARTICLE



SOLUTIONS FOR SANDERS





SOLUTIONS FOR MULTIOPENING

SEVERAL VARIOUS **EXTINGUISHING METHODS**

- Full Cone Water extinguishing
- Water mist
- Steam
- Diverting / Isolation of ignition sources
- CO2 / Inert gas
- Etc

RESEARCH SHOWS THAT **DETECTING ONLY SPARKS HAS** LESS EFFECT THAN FIRST THOUGHT, YOU NEED TO DETECT BOTH SPARKS AND DARK / HOT PARTICLES IN YOUR PROCESS TO MINIMIZE FIRES AND DUST EXPLOSIONS.

* Proc. Rolf Eckhoff, "Dust explosions in the process industries" (2nd edition)

Thank You!

Mikael Jidenius

TISSUE

HYGIENE

2016-03-29 Mikael Jidenius

PULP & PAPER