Assuring 100\% Plant Capacity with your Dryer Environmental System -RTO Redundancy-

$\frac{\text { MEGTEC }}{\text { BRy }}$
Rodney Schwartz
VP Global Sales

Target Zero - Our Global Safety Vision

Making Safety Personal
Zero is Achievable Incidents are Preventable Safety is Personal All Day, Every Day Willingness to Intervene

Sustainable System, Talent \& Capabilities

Comprehensive Global

 EHS\&S Management System with externally accredited operations (ISO, OSHAS, OSHA VPP)

Getting Results
Proven results with continually improving best-in-class performance

20% reduction in injury frequency, and 24% reduction in injury

Our mission is to provide best-in-class and top decile performance, striving to be an industry leader and externally recognized leader.

Efficient, integrated, market differentiator.

Babcock \& Wilcox MEGTEC Corporate Headquarters

Located in De Pere, Wisconsin:
êB\&W MEGTEC employs approximately 350 people in the US and approximately 600 globally
êChemical, Mechanical and Electrical Engineers and Designers
ê100+ Service, Technical and Support Personnel
ê100+ Manufacturing Personnel
êDedicated R\&D and Pilot Laboratory Support Team
êOracle ERP, Risk Management Programs, Salesforce CRM

Business Platforms

Products

Wet \& Dry Electrostatic Precipitators
Wet \& Dry Scrubbers
Pulse Jet Fabric Filters (Baghouses)
Multiclone ${ }^{\circledR}$ Dust Collectors SCR/SNCR Systems
Evaporative Gas Cooling Systems

Air Flotation Dryers
Regenerative Thermal Oxidizers (RTOs)
Solvent Recovery Systems
Carbon Adsorption Systems
Distillation Systems
Heat Recovery Systems

Belt/Conveyor Dryers
UV or IR Dryers
Custom Drying Systems
Specialized Coating Lines
Material Handling Equipment

Services

Replacement Parts \& Service
Equipment Rebuilds
Preventive Maintenance

Energy Optimization
Equipment Relocations

Environmental Technology Development

- Catalytic Oxidizers - Heat Recovery Systems - Solvent Recovery Systems - Distillation \& Purification Syste - Bioscrubbers/Bioreactors - Wet Electrostatic Precipitators - Wet \& Semi-dry Scrubbers - SNCR DeNO xystems - Evaporative Cooling Systems - Atomizing Nozzles	

- Pulse Jet Fabric Filters (Baghouses)
- Multiclone ${ }^{\circledR}$ Dust Collectors
- Dry Electrostatic Precipitators
- SCR DeNO ${ }_{x}$ Systems
- Dry Sorbent Injection Systems
- Engineered Acoustic, Filtration \& Emission Systems

In the Beginning... circa 2001

[匃 Wood Panel Board Industry - Do we or don't we?

ê Consent Decrees mid-1990s

- Major Producers forced to install pollution control equipment - "quickly"
- The first wave of products and projects had significant problems
ê PCWP (Plywood Composite Wood Products) MACT promulgated September 28, 2004
ê Large airflows with low VOC/HAP content = high thermal efficiency required
ê Products to offer - WESP/RTO/RCO
ê There will be significant resources and investment required to make a difference

Media "Glued" Together

B\&W MEGTEC Pilot RTO

B:W

Bemidji, MN OSB Flake Dryers, EFB, Bark Burner

Jefferson, TX Dry ESP on Wood Fired SYP

Deposit, NY Northern MDF Wood Fired Dryer

Random and Structured Bed in Pilot Unit

Random Media Samples, 7 months

Structured Block Testing

Pilot RTO Bed Inspection

Media Testing Samples

Megtec Tag	Mnf	Type	Ceramic	Proprietary	Proprietary	Proprietary	Proprietary
New							
101	Proprietary	1 inch Typak	Alkaware		X		X
102	Proprietary	1 inch Typak	Porcelain		X		
103	Proprietary	25 cell mono	NT	X			
104	Proprietary	1 inch LPD	Porcelain	X			
105	Proprietary	1 inch LPD	GR	X			
106	Proprietary	1 inch saddle	Alkaline resistant	X			
107	Proprietary	MLM 180	Porcelain				
108	Proprietary	25 cell mono	HTH	X			
109	Proprietary	25 cell mono	HT	X			
4 month	t 1500						
101	Proprietary	1 inch Typak	Alkaware	X	X		X
102	Proprietary	1 inch Typak	Porcelain	X	X		
103	Proprietary	25 cell mono	NT	X		X	
104	Proprietary	1 inch LPD	Porcelain	X			X
105	Proprietary	1 inch LPD	GR	X			X
106	Proprietary	1 inch saddle	Alkaline resistant	X	X		
107	Proprietary	MLM 180	Porcelain		X		
108	Proprietary	25 cell mono	HTH	X		X	
109	Proprietary	25 cell mono	HT	X		X	

Research and Development

B:N

Research and Development

Research and Development

B:N
MEGTEC

Research and Development

Media/ Bed Descrip tion	Measured Corrosion Rate at Temperature $\mu_{\mathrm{m}} /$ month 1			Estimated Corrosion Limit	Estimated Time to Failure in Hot Face	$\begin{gathered} \text { Corrosion } \\ \text { Rating }^{2} \\ \hline \end{gathered}$	Water Usage per Cleaning	Washout Pressure Recovery	Media Cost
ID \#	$1200^{\circ} \mathrm{F}$	$\underline{1500^{\circ} \mathrm{F}}$	$1650^{\circ} \mathrm{F}$	$\mu_{\text {m }}$	months	$\begin{aligned} & 1=\text { Best } \\ & 4=\text { Worst } \end{aligned}$			
101	nil	nil	nil	600	>24	1	High	Fair	Med
102	25	63	288	600	9.5	3	High	Fair	Low
106	No Data	nil	nil	400	>24	1	High	Poor ${ }^{4}$	Med
107	$\begin{array}{r} 40 @ \\ 1300^{\circ} \mathrm{F} \\ \hline \end{array}$	50	No Data	400	8.0	4	Medium	Good	Low
108	No Data	3	$\begin{gathered} 15 @ \\ 1500 / 1650^{\circ} \mathrm{F} \\ \hline \end{gathered}$	200	>24	2	Low	Good	High
109	<1 est.	26	ref 112	200	7.7	3	Low	Good	Med
110	No Data	nil	$\begin{gathered} \text { nil @ } \\ \text { 1500/1650F } \end{gathered}$	200	>24	1	Low	Good	High
111	1 est.	ref 103	128	200	ref 103	3	Low	Good	Med

Ceramics Engineering

What We've Learned

êCharacteristics of random and structured ceramic beds in OSB with SYP and northern hardwoods and MDF with northern hardwoods
êNo two mills are the same - ever!
êPlugging factors (organic and inorganic particulate) associated with EFB and dry ESP upstream of RTO
êWhere (exactly) inorganic ash builds up in the ceramic bed
êCleanability of random and structured ceramic beds
êlmpact of sodium and potassium salts on many different types of media (random and structured) including the impact of temperature
êBecame experts on inlet gas stream characterization and the importance of how it applies to different ceramics and RTO design
êHow to design and deliver high thermal efficiency beds

- Every \% increase in thermal efficiency $>95 \%=20 \%$ lower gas consumption

Two Fold Problem

Bed plugging
ORGANIC
［罒Buildup on coldface
［団 Condensables on ducting and valves
［団Solution is an EFFECTIVE bakeout

INORGANIC

Bed degradation

団 Alkali attack over 1000F
［鿊 Spalling，chipping and cracking
［炳 Fusing together eventually plugs the bed
［団］Solution is particulate control of sub－micron ash，and／or alkali－ resistant ceramics

WInorganic buildup in bed
［圆Hard to clean out
［圆］Solution is EFFECTIVE bed wash

What Producers Want.

- Safety
- Maximum Up Time
- Simplicity
- Reliability

- Maintenance Friendly Design
- Predictable Maintenance
- Reduced Energy Consumption

Effective Maintenance

ê Effective 2-hour bake outs (condensable particulate)

- Effective = uniform airflow and temperature
- Can be accomplished monthly during a down day
ê Effective Wash outs (filterable particulate)
- Ceramic beds that are "washable"
- Proper RTO wash water drainage system

RTO Redundancy

ê 100\% plant capacity during predictive or unpredictive maintenance events
ê Lower Operating Costs

- Natural Gas - Increased Thermal Energy Recovery
- Electrical - Lower Operating Bhp
ê Increased Capital Costs
- "More" RTO
- Man-safe isolation dampers

ê Maintenance is done off-line and in a controlled environment
ê No need to wait for a regular down day or scheduled outage to do maintenance work

RTO Redundancy

図What is the cost of unexpected down time for your mill?

Hardwood OSB Dryer RTO - 2005 (EFB)

400,000 acfm SYP

B:N

400,000 ACFM

01-10-2018 Wed 11:59:24 AM

Energy Savings \& Payback

Capital Cost Increase	18%
Fuel Savings	$6.2 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$
Electrical Savings	212 kW
Annual Operating Cost Savings	$\$ 300-\$ 400,000$
Payback	$3-4$ years

286,000 ACFM - SYP

Energy Savings \& Payback

Capital Cost Increase	26%
Fuel Savings	$6.2 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$
Electrical Savings	326 kW
Annual Operating Cost Savings	$\$ 400-\$ 500,000$
Payback	$2-3$ years

300,000 ACFM - Hardwood/Softwood

300,000 ACFM - Harwood/Softwood

Energy Savings \& Payback

Capital Cost Increase	26%
Fuel Savings	$4.9 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$
Electrical Savings	242 kW
Annual Operating Cost Savings	$\$ 300-\$ 400,000$
Payback	$4-5$ years

300,000 ACFM - SYP

300,000 ACFM - SYP

B:W

300,000 ACFM SYP

Energy Savings \& Payback

Capital Cost Increase	27%
Fuel Savings	$7.2 \mathrm{MM} \mathrm{Btu} / \mathrm{hr}$
Electrical Savings	236 kW
Annual Operating Cost Savings	$\$ 400-\$ 500,000$
Payback	$3-4$ years

What We've Accomplished to Date

OSB/Wood 3,800,000 acfm treated
MDF 802,000 acfm treated
Particleboard 600,000 acfm treated
Plywood Veneer 525,000 acfm treated
Total: \quad 5,727,000 acfm treated
RESUTS

Maximize Up Time

- RTO Redundancy
- 100% plant capacity during predictive or unpredictive maintenance events
- Lower Operating Costs
- Natural Gas
- Electrical
- Increased Capital Costs
- Predictive maintenance can be done off-line and in a controlled environment
- No need to wait for a regular down day or scheduled outage to do maintenance work

Thank you!
$\frac{\text { MEGTEC }}{20 y}$

