

TOPICS

ENERGY EFFICIENCY OPPORTUNITIES in biomass energy systems

Visit us at booth 703

Friday, 13th April at 4 pm

FRANCISCO RIPOLL

EXPORT MANAGER AT SUGIMAT

BACKGROUND:

- Industrial Engineer specialized in Quality & Logistics at Polytechnic University of Valencia (Spain)
- MBA Executive at Cardenal Herrera CEU University in Valencia
- Speaker at conferences & seminars in Denmark, Spain, Ukraine, UK & the USA
- 10 years of experience in thermal energy sector

ENGINEERING COMPANY FOR GENERATION & USE OF

ENERGY

SUGIMAT offers custom made solutions in the industrial boilers market, with applications focused on power generation using fossil fuels, biomass and other unconventional fuels

Since 1978 40 years of know-how

3,000 References
Up to 27 countries

Human capital 100 employees

LABORATORY, ENGINEERING & FACTORY

embarbex

FULL EQUIPPED LABORATORY FOR TESTING NEW FUELS

R&D DEPARTMENT WITH MORE THAN 20 ENGINEERS AT YOUR DISPOSAL FACTORY WITH 215,000 SQ. FT IN VALENCIA (SPAIN)

HEADQUARTER: SPAIN & 7 INTERNATIONAL OFFICES

SPAIN

FRANCE

GERMANY

ITALY

POLAND

PORTUGAL

UΚ

USA: ATLANTA

Up to 8 offices worldwide and more than 3,000 references in 27 different countries

POWER, BIOMASS & HEATING FLUID

C

HEATERS

U

S

0

M

Z

Ε

D

Thermal oil HTF

Hot water & overheated water

Steam

Hot gases generator

Process furnace

HEAT EXCHANGERS

Hot water & overheater water exchanges Thermal oil exchangers

Condensators

Steam generators

COMBUSTION SYSTEMS

Fossil: Gas, diesel, fuel oil...

Biomass

Unconventional fuels

ORC GENERATION PLANTS

WE ADAPT OUR STANDARD PRODUCTS TO THE NEEDS OF OUR CUSTOMERS

POWER, BIOMASS & HEATING FLUID

U

C

S

0

M

Z

Ε

D

PLYWOOD PLANT

Biomass/thermal fluid

CHEMICAL INDUSTRY

Natural gas /thermal fluid

COGENERATION PELLET PLANT

Biomass /thermal fluid

POPLAR PLANT

Fluidized bed/ biomass thermal fluid

POWER, BIOMASS & HEATING FLUID

C U

S

т

0

M

ı

Z

Ε

D

THERMOSOLAR PLANT

HTF heaters

PELLET PLANT

Biomass hot water boiler

TEXTIL

Fire tube steam boiler biomass

Biomass thermal fluid hot gases

INTERNATIONAL BRANDS WE ALREADY WORK WITH

TOPICS

ENERGY EFFICIENCY OPPORTUNITIES in biomass energy systems

- COMBUSTION CONTROL
- THERMAL OIL HEATERS vs STEAM HEATERS

SECTORS

WOOD

PAPER & **PAPERBOARDS**

CORK

DETERGENTS

FURNITURE

TEXTILE

FOOD

CHEMICAL

PLASTICS

TANNING

BITUMEN &

RUBBER

METALLURGY

CANNING

CATERING

WHAT ARE THE NEEDS OF THE INDUSTRY THAT BURNS

WASTE?

PARTICLE LAMINATED BOARD

OSB

W O O D S E C T O R

MDF

PLYWOOD

WHAT ARE THE NEEDS OF THE INDUSTRY THAT BURNS WASTE?

- More cost-effective plants
- More efficient plants
- Safer plants
- Less unscheduled stops (8000 h/year)
- Less human attention during production
- Equipment complying with Emissions Directive

WHAT ARE THE NEEDS OF THE INDUSTRY THAT BURNS

WASTE?

TOPIC 1

COMBUSTION CONTROL: Computer vision adapted to combustion

COMPUTER VISION DEMONSTRATION

COMBUSTION CONTROL

CASE STUDY:

40 M BTU Power plant at 536 °F

- Thermal fluid
- Poplar barks
- Mechanical grates

DIFFERENT STRESSES

DURING WORKING TIME

CONSEQUENCES ON THE FURNACE

Located: Samazan (France)

COMBUSTION CONTROL

STRESSES:

CHANGES ON BIOMASS Moisture, size, ashes, melting point of ashes

CONSUMPTION PEAKS & OFF-PEAKS

WEATHER CHANGES

PUSHER GRATES

Unburned

COMBUSTION CONTROL

CONSECUENCES of EVENTUALITIES

- Unstable flame front
- Inefficient combustion
- Risk of unburned particles
- Flame-backs
- Emissions above the limits
- Assistance by a heater operator

DESIGN. 30% WET

OPTION 1. 45% WET

OPTION 2. 15% WET

WHAT IS THE TOOL?

COMPUTER VISION ADAPTED TO COMBUSTION

Real world processing

COMPUTER VISION & FRONT FLAME CONTROL

SPEED REGULATION OF THE GRATES

PRECISE AIR INPUT TO THE COMBUSTION

REGULATED BIOMASS INPUT

Make decisions based on the information

FRONT FLAME CONTROL

FRONT FLAME CONTROL

ACCURATE GRATE SPEED REGULATION

PRECISE AIR INPUT TO THE COMBUSTION

REGULATED BIOMASS INPUT

CONSEQUENCES

- NOx reduction
- CO reduction
- Improvement of combustion efficiency
- Stability of the power supplied
- Protection of feeding system and embers zone

COMBUSTION CONTROL

SUGIMAT has developed a COMPUTER VISION **SYSTEM** to get:

SELF DRIVEN PLANTS

EFFICIENT INSTALLATIONS

SAFER PLANTS

TOPIC 2

HEAT TRANSFER FLUID CHOICE depending on the production process

HEAT TRANSFER FLUID CHOICE DEPENDING ON THE PRODUCTION PROCESS CRITICAL TEMPERATURES

1950 - CHEMICAL SECTOR REACTORS

required temperatures 572 º F

Steam boilers High pressure 90 Bar Very high costs Very big heater rooms

GERMAN COMPANY developed thermal oil heaters to work at 572º F at atmospheric pressure

CONSEQUENCES

Higher safety Reduced heater rooms Less maintance costs Higher efficiency

Other **COUNTRIES**

CHEMICAL

METALLURGY RUBBER

WOOD

1964 - SPAIN

WHAT ARE THE NEEDS OF THE INDUSTRY BURNING

WASTES?

PARTICLE LAMINATED BOARD

OSB

WOOD SECTOR

MDF

PLYWOOD

PRODUCTION PROCESS

CONTINUOUS PRESSES 545 º F

PRODUCTION PROCESS

MELAMINE PRESSES 356º F

PRESSES SINGLE/MULTI-DAYLIGHT 428 º F

GLUE HEATERS

HEATING

STEAM CONSUMERS 12 BAR

BOILING WOOD 8 B A R

PLYWOOD DRYERS 518 º F

PRODUCTION PROCESS

CONTINUOUS PRESSES 545 ºF

PLYWOOD DRYERS 518 º F

PRESSES SINGLE/MULTI-DAYLIGHT 428ºF

MELAMINE PRESSES 356 º F

STEAM

75 Bar

55 Bar

25 Bar

10 Bar

THERMAL OIL

0 C

SELECTION OF FLUID HEATER BASED ON THE PRODUCTION PROCESS

SELECTION OF FLUID HEATER BASED ON THE PRODUCTION PROCESS

CONCEPT	STEAM – HIGH PRESSURE	OIL- LOW PRESSURE
PERFORMANCE CONSUMERS	LIMITED TO THE HEATER'S PRESSURE	HIGH PERFORMANCE-HIGH TEMPERATURE
INVESTMENT - HEATER	ENORMOUS – LARGE THICKNESS TUBES	MODEST -REDUCED THICKNESS TUBES
	HIGH – IT REQUIRES CIVIL WORKS WITH THICK WALLS OR	
INVESTMENT - CIVIL WORKS	RESPECTING A CONSIDERABLE DISTANCE	NOT REQUIRED -OUTDOORS
INVESTMENT - SAFETY	VERY EXPENSIVE -HIGH PRESSURE RISKS	LOW PRESSURE RISKS

SELECTION OF FLUID HEATER BASED ON THE PRODUCTION PROCESS

CONCEPT	STEAM – HIGH PRESSURE	OIL- LOW PRESSURE
STOP MAINTENANCE	FREEZING POINT 32ºF	FREEZING POINT -40º F
	PIPE CHANGING IN FIRE TUBE HEATERS TO WITHSTAND THERMAL SHOCKS AND	
HEATER MAINTENANCE	VAPORIZATION ON THE SURFACE	ALMOST NON-EXISTENT
FAILURE MAINTENANCE	HIGH PROBABILITY OF LEAKAGES DUE TO BREAKS (COMMON)	LOW PROBABILITY OF LEAKAGES DUE TO BREAKS
FLUID QUALITY MAINTENANCE	HIGH COSTS IN QUALITY CONTROL TO PREVENT PROBLEMS DERIVED FROM LIME , ACIDITY, RUSTING AND TURBIDITY	ALMOST NON-EXISTENT
DUMP MAINTENANCE	LOTS OF DESCRIBE IN SEALINGS CONSTANT MAINTENANCE	LONGED LIEE SINGE CONSTANTIVILIBRICATED
PUMP MAINTENANCE	LOTS OF PRESSURE IN SEALINGS – CONSTANT MAINTENANCE	LONGER LIFE SINCE CONSTANTLY LUBRICATED

SELECTION OF FLUID HEATER BASED ON THE PRODUCTION PROCESS

CONCEPT	STEAM – HIGH PRESSURE	OIL- LOW PRESSURE
SELF-CONSUMPTION	REDUCED (SINCE LESS QUANTITY OF LIQUID MASS)	HIGH (SINCE A HIGH QUANTITY OF FLUID HAS TO BE MOVED)
SAFETY	IN CASE OF LACK OF STEAM IN THE HEATER, IF WATER COMES IN AN EXPLOSION MAY OCCUR	LOW RISK OF EXPLOSION
AUTHORIZATIONS	EXTREMELY RESTRICTIVE	LESS RESTRICTIVE
OPERATION	-	BETTER REGULATION/FLEXIBILITY REGARDING TEMPERATURE

PRODUCTION PROCESS

VERSATILITY WITH THERMAL OIL

OUR ADDED VALUE

CUSTOM MADE SOLUTIONS

COMBUSTION CONTROL

HEAT TRANSFER FLUID
CHOICE DEPENDING ON THE
PRODUCTION PROCESS

THANK YOU VERY MUCH FOR YOUR ATTENTION

Francisco Ripoll

□ Paco.ripoll@sugimat.com

1770 627 0516

