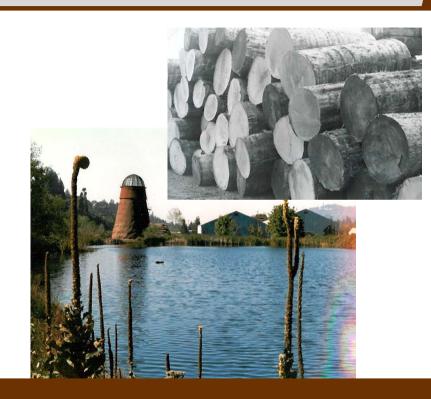


Freres History

- Founded in 1922 by TG Freres
- Produced lumber until 1959 when we installed a large log veneer plant in Lyons, OR
 - Partnership with Willamette Industries
- Installed small log veneer mill in 1963
- Installed Studmill in 1970- Value added to core stock

Freres History


- First veneer dryer installed in 1990
- Second dryer installed in 1994
 - Supply dry veneer for engineered wood products markets
- Purchased North Santiam Plywood in 1998 out of bankruptcy
 - First move into finished product markets since lumber production
- Installed boiler and Co-gen facility in 2007
 - 100,000 pph boiler
 - 10mW turbine generator powered off of hog fuel and urban wood waste.
 - Offset Natural Gas consumption and provides electricity to 5000 homes

Freres Operations

- One of the largest independent veneer producers on West Coast
 - 400 million square feet of veneer production
 - 200 million feet of plywood production
 - 450 employees with family wage jobs
 - Highly dependent on Federal Timber sales for timber supply
 - Invested over \$130 million into our facilities over the last dozen years

FLC Operates

- Two Veneer plants
- Veneer Drying Facility
- Plywood Plant
- Cogeneration Facility
- Stud mill
- Fleet of Log and Highway Trucks
- MPP Facility
- Operational December 2017

MPP- Main Concepts

- We have experience in density graded wood since 1990
- We have been producing plywood for 20 years
- Engineered Structural Composite Lumber Products meet or exceed performance of conventional lumber products
- Veneer production utilizes fiber available in logs very efficiently
- Plywood and SCL products meet or exceed minimum moisture requirements for CLT- 12%
 - Veneer is dried to 4-6%
 - After panel production moisture content is 8-10%
- Veneer-based panels have predictable falldown
- Potential to produce Mass Timber Panels in increments less than 2-plies of lumber

Product Development Process

- Producing and testing concept panels since April 2015
 - PFS –TECO provided testing lab and initial product verification
- Patent filed October 2015
- OSU receives proof of concept panels January 2016
 - Results received March 2016
- Po's cut for test facility by April 2016
 - Test facility operational February 2017
 - 4'x 17.5' laminating press
 - DET and RF Scarf Press

Equipment Suppliers

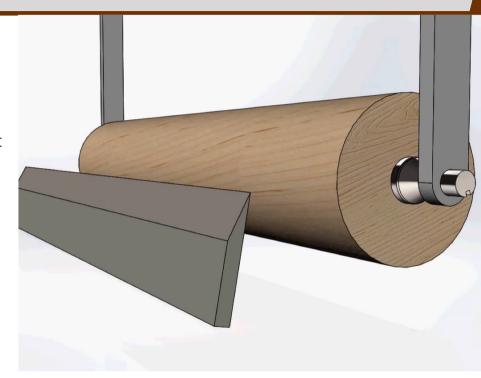
- Project requirements
 - Freres to provide equipment up to WIP inventory
 - Equipment required from MPP panel construction through processing
 - 12-month time frame
- Requested quotes from several equipment suppliers.
 - Narrowed quotes down to 3 potential providers
- Homag/Stiles/Minda
 - Experience in CLT industry
 - Turn-key provider
- CD-Redding- Primary Building Contractor

stiles

MINDA & Aiken Controls

Member of

Innovation RESEARCH LABS

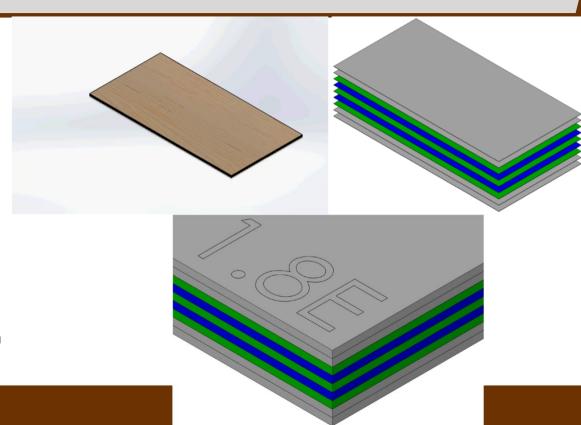

Our Raw Material is Veneer

Veneer is the finest wood format to create engineer wood products

- Higher Recovery of usable fiber than lumber
- Overcomes the problem of producing a square product out of a round tree
- Innumerable potential layups with various thicknesses, density grades, orientations and visual grades

Timber Availability

- Ideal timber for engineered veneer products is suppressed 2nd growth trees
- Average block diameter for our engineered veneer plant is 8.5"
- EVERY sheet of veneer has a definable engineering value

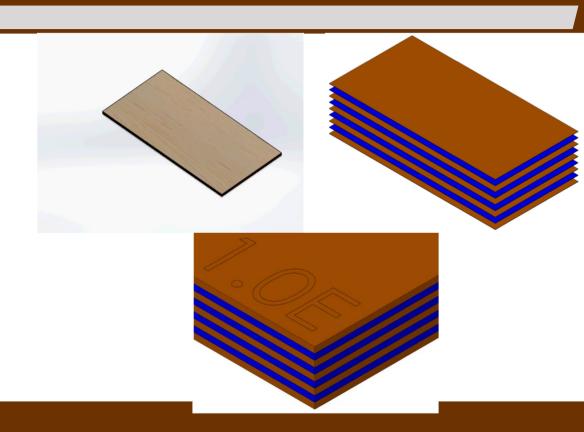

Structural Composite Lumber

1.8E Lamella Example

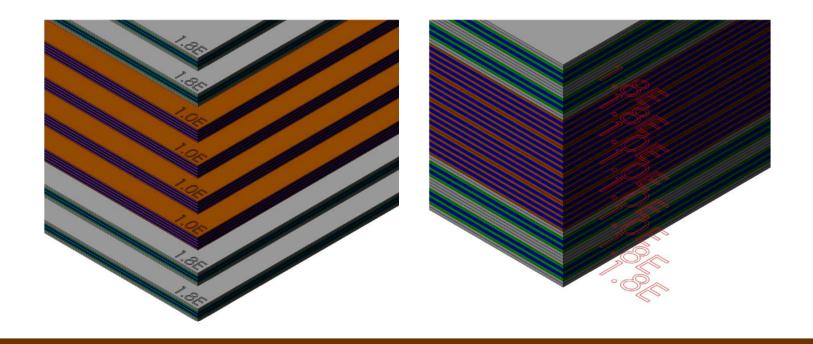
- 9-plies of veneer
- 7 long-grain & 2 cross grain
- Veneer density grades include G1, G2 and G3

Layup Benefits

- Majority of panel is long-grain orientation
 - Span Performance
 - Cross-banding contributes to minor force direction and panel dimensional stability
- Primarily used in Tension and Compression Portions of Mass Timber Panel


Structural Composite Lumber

1.0E Lamella Example

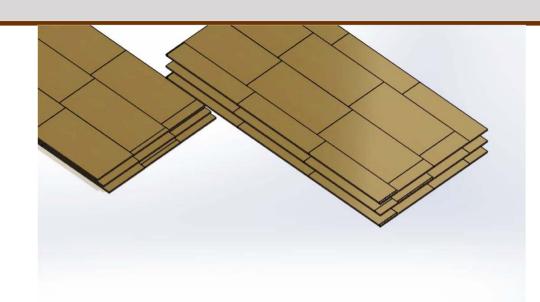

- 9-plies of veneer
- 5 long-grain & 4 cross grain
- Veneer density grades predominantly G3

Layup Benefits

- Alternating Long and Cross-grain veneers
 - Major Force & Minor Force Direction Contribution
 - Shear performance & Panel Stability
- Primarily used in Center portion of Mass Timber Panel

MPP- Design Values

Lay-up


Effective Stiffness (EI) $_{\rm eff,f,0}$ (x10 6 lbf-in 2 /ft of width) Shear Modulus (GA) $_{\rm eff,f,0}$ (x10 6 lbf/foot of width) Moment Capacity (F $_{\rm b}$ S) $_{\rm eff,f,0}$ (ft-lbs/ft of width) Shear Capacity V $_{\rm s,0}$ (lbf/foot of width) Pounds per Cubic Foot Pounds per Lineal Foot/Foot of Width)

I	Major Strength Axis				
I					8" MPP
ı	7" MPP				F22 SCL
ı			6" MPP	F22 SCL	F22 SCL
I		5" MPP	F22 SCL	F22 SCL	F10 SCL
ı	4" MPP	F22 SCL	F22 SCL	F10 SCL	F10 SCL
I	F22 SCL	F22 SCL	F10 SCL	F10 SCL	F10 SCL
I	F10 SCL	F10 SCL	F10 SCL	F10 SCL	F10 SCL
I	F10 SCL	F22 SCL	F22 SCL	F22 SCL	F22 SCL
l	F22 SCL	F22 SCL	F22 SCL	F22 SCL	F22 SCL
)	113	233	397	618	902
)	2.66	3.27	3.91	4.10	5.32
)	4600	7625	10825	14450	18450
)	3000	3965	4675	5350	5975
t	37	37	37	37	37
n	12.3	15.4	18.5	21.6	24.7

MPP Manufacturing

- Pre-made 4' wide by 48.5' long plates- structural composite lumber
- Panels built predominantly in long lamellasoverlapping joints to eliminate weakness across the panel width
- Cross-plies built into the panel per design specifications
- 3 to 4 plates per 12' wide lamella allowing much easier and quicker construction than 2"x6" or 2"x12"boards
- 54 veneer plies in a 6" thick MPP panel, each engineered for appropriate density, orientation, and visual grade
- Cross-banding built in through the panel- NO ODD PLY BENEFIT

Mass Timber Panel Facility Operational December 2017

Product Strengths

Cross-banding in Each 1" Lamella

- Panel Thickness Increased in 1" increments
 - NO ODD-PLY BENEFIT
- Can achieve comparable performance in Major & Minor Force Directions

Density

- Potentially Stiffer Performance
- Outperforms in design values where density contributes

Cost

- Density graded veneers of lower grades widely available
- 95% of full sheet veneer processed at our greenends are G3 or above

Patent Pending

- Product & Process Patent Pending
- PCT Patent Pending for International Application

Product Weaknesses

Glue-lines

- Intense QC to ensure bond-quality
 - Number of glue-lines per cross-section

Wood Loss

- 10% wood loss in structural joint
- Increased fall-down for SCL lamella

Certification

- Multiple Steps for Certification
 - EXPENSIVE FOR MATERIAL AND TESTING
- ASTM D5456- Creep Testing
 - Long-term testing
- 1st time this testing protocol has been applied for a Mass Timber Panel

Unique

- No template for facility design and application
- No existing tested information for comparable product

Product Certification: APA-EWS and ICC-ES

- Structural Composite Lumber: ASTM D5456
 - ASTM D5456 14b "Standard Specification for Evaluation of Structural Composite Lumber Products"
 - ICC-ES AC 47 "Structural Wood Based Products".
- Certification of the MPP Products
 - ANSI/APA PRG 320-2012 "Standard for Performance-Rated Cross-Laminated Timber"
 - ICC-ES AC 455 "Cross Laminated Timber Panels for use as Components in Floor and Decks"

Product Development Update

- ASTM D5456 & PRG 320
 - Product Certification Timeframe doubles compared to testing solely for PRG 320
 - Product & Plant Certification concurrently
 - Difficult to produce panels for testing while also debugging production facility
 - Creep Test- Not required under PRG-320
 - 30-day required test period- with condition and sample preparation closer to 5 months
 - Limited capacity at test facility to complete this test
 - Witnessing
 - Test specimens must be witnessed at each stage of production, requiring coordination with test facility

Testing Data Completed

UNIVERSITY

1.8 E Design Values

- Edge Bending with moisture and volume effects
- Flat bending (both strength axis)
- Tension with moisture and volume effects
- Compression parallel to grain
- Creep test completed by month end.

1.0 E Design Values

Flat bending

2.0 E Beam and Header

• Completed creep test

1.55 E Design Values

In-process

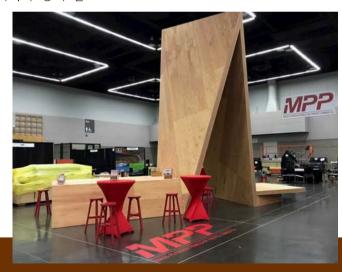
OSU bending and shear test data.

Brochures based upon this data.

MPP Testing

2" shear and pre-qualification testing finishing/completed.

Testing Underway


- Lifecycle Assessment
- Rocking Wall
- Acoustics
- Seismic Structures
- Fastener, Dowel, Component Wall Test

Future Testing

- Large-scale Column & Beam
 - Compression Testing
- Long-term Durability & Weathering
 - MEC-MAC

TALLWOOD

DESIGN INSTITUTE

Southwest Research Institute- Fire Compartment Test

- Future Fire Tests
 - ASTM E84- Flame Spread
 - ASTM E119- Char rate
- ARUP is our primary fire contractor
- Additional fire testing is anticipated to be completed in the next 4-6 months

Future Developments

- Large-scale Column and Beam
- Industrial Applications
- Engineering Team for multi-story structural applications

