Advances in Veneer Dryer Moisture Sensing & Control

presented by

John Robinson & Roger Douglas Drying Technology, Inc. 409-385-6422 <u>www.moisturecontrols.com</u> john@moisturecontrols.com

Control Veneer Moisture Rather than % Redry

Goals

Maximize Veneer Production Rates Improve Veneer Quality Increase Veneer Recovery Lower Glue Usage

Since these goals depend on Veneer Moisture Control Veneer Moisture Rather than % Redry How do we accomplish that?

Problems with Redry-based Veneer Dryer Control (Long lag time & control of wrong variable)

Exclusive Delta T Model Features That Significantly Improves Veneer Dryer Control

$$MC = K_1(\Delta T)^p - K_2/S^q$$

An Inside-the-dryer Moisture Sensor

Capability for calculating new setpoint

Replace % Redry Control With Delta T Moisture Control Technology Delta T Inside-the-Dryer MC Sensing & Control

Inside-the-Dryer Moisture Sensor (Solves Lag time Problem)

Delta T Moisture Control Technology Delta T Calculates New Set Point That Maintains Target MC

Improved Veneer Dryer Controls Veneer Moisture Control Technology not Redry

Delta T Enables Veneer MC to be Shifted From 10.0% to 10.9%

Typical Veneer Drying Curve

Increase Production Rate By Improved Moisture Control

Synergistic Effect of Air Content on Driving Force for Veneer Drying

Potential Savings Provided by Delta T

Normal use of Delta T	7.0%
Increase veneer moisture of 0.9%	4.5%
Monitoring & operating at optimum air content	3.6%
Glue Savings from Increase in MC	\$\$

Quality Improvement

77

