Industry 4.0 — The “4%" Industrial Revolution”

“The Importance of Analytics in Today’s Researc
Pragmatic Algorithms, Predictive Models and Improved Performance for the Bio-Based Industries

Timothy M. Young, PhD
Professor | Graduate Director
University of Tennessee

Center for Renewable Carbon .
2506 Jacob Drive R

Knoxville, TN 37996-4570 Cerﬂer for Renewable Carbon

Tel 865 946 1119 BT Unibvesrsity of Tennesses insSiute of Agrcutiune

UTAGRESEARCH tmvc.Junq.l@u:[k.edu

INSTITUTE OF AGRICULTURE
THE UNIVERSITY OF TEMMESSEE WWW_SDC4|ean . Com

~ )

PANEL & ENGINEERED 3 J
" | LUMBER INTERNATIONAL egister 0g SPONSors Exhibitor 2008-2014
, CONFERENCE & EXPO : ! )

-

APRIL 13'-14 2018/ ATLiNTA, GEORGIA USA - %

s

o i ol ) Il "? T~ '_'"’ [N
The Educational and Training Event For The Benefit Of The Worldwide Structural, Non-

Structural Wood Panel, Engineered Lumber, Components, and Laminates and Value-Added
Industries

=



Industry 4.0 — The “4*" Industrial Revolution”

Analytics is Revolutionizing Today’s Business World
The New Competitive Advantage!

Are University Researchers Aligned in Innovation with this New Revolution?



‘Analytics’ in R&D and Process Application is
Key to Success in ‘Industry 4.0°

INNOVATION
DISTINGUISHES
BETWEEN A
LEADER AND
A FOLLOWER.

Innovation is the process of turning ideas into manufacturable and

marketable form.

Innovation comes from the producer - not from the
customer.

Watts Humprey

(W. Edwards Deming)

T poy ¢y

Understanding variation is the key to success in quality and business.
W. Edwards Deming



‘Analytics’ in R&D is Key to Success in this Era

Data ] Information f¥] Analytics f¥] Knowledge

“People . . . operate with beliefs and biases. To the extent you can eliminate both and replace them with
data, you gain a clear advantage. —Mlichael Lewis, Moneyball: The Art of Winning an Unfair Game”

_ “Without data,

you're just another

~_person with an
‘opinion.”

~“W. Edwards Deming

Some of the best theorizing comes after collecting data because then you become aware
of another reality.” — Robert J. Shiller, Winner of the Nobel Prize in Economics




Foundation of Industry 4.0

Study of Variation of Processes — Discovery for Improvement and Optimization

“The Fourth Industrial Revolution”:
Computers and automation will come together in an
entirely new way, with robotics connected remotely
to computer systems equipped with machine learning
algorithms that can learn and control the robotics with very
little input from human operators.

Machines will discover optimization opportunities
not feasible by ‘mankind alone’
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Industry 4.0 — The Fourth Industrial Revolution

INDUSTRY 4.0 - THE FOURTH INDUSTRIAUREVOLDUTIOF

o

And now we enter Industry 4.0, in which computers and
automation will come together in an entirely new way, with
robotics connected remotely to computer systems equipped with
machine learning algorithms that can learn and control the
robotics with very little input from human operators.

Industry 4.0 defined, explained and visualized - with evolutions and data

For a factory or system to be considered Industry 4.0, it must include:

¢ Interoperability — machines, devices, sensors and people that connect and communicate with
one another.

a Information transparency — the systems create a virtual copy of the physical world through
sensor data in order to contextualize information.

a Technical assistance — both the ability of the systems to support humans in making decisions
and solving problems and the ability to assist humans with tasks that are too difficult or unsafe
for humans.

¢ Decentralized decision-making — the ability of cyber-physical systems to make simple decisions
on their own and become as autonomous as possible.



Industry 4.0 — The Fourth Industrial Revolution
“Global Perspective”

USA
Manufacturing
Renaissance

Formation of a
,National Network
for Manufacturing
Innovation’
Lower cost
energy initiatives

Smart
Manufacturing
Leadership
Coalition

Deutschland
Erhaltung der Fuhrenden
Industrie Position

* Nachhaltige
Investitionen in
Innovative
Starkefaktoren

» Hoher Exportanteil

Industrie 4.0 als neues
Gestaltungsprinzip

China

Higher product quality
by use of high-end
technology

» Rising wages

* Need for quality
driven demand for
automation

- Energy efficient
legislation

Intelligent
Manufacturing

Japan

A cohesive‘innovation
program as all levels’

« Science, technology
and industry linked
together

» Retain
manufacturing of
comlex products

Innovation 25 initiative
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Laboratory

Do University Researchers Understand This?

Variation is Cumulative

“Key Principle for Researchers to Understand When
Transferring R&D to Processes” |

Process

Pilot Scale

Target ---

Target ---

Full-Scale Manufacturing | |
fangg ¢ kg !



Variation Influences Process Targets
‘Targets’ for Additives in Pilot Studies # ‘Targets’in Manufacturing Process
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Variation Influences Process Targets
“Focus on Reducing Variation of Key Process Inputs”
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Variation Influences Process Targets
“Focus on Reducing Variation of Key Process Inputs”

Solvent .

Lower Specification
Limit for Product

Quality

et Feedstock Variation



Variation is Directly Related to Economic Loss

“Product Quality is often Incorrectly viewed as Conformance to Specifications”

Noncompetitive Viewpoint: “No Loss unless product is outside of specification,” i.e., outside of
specification translates to loss of customer due to claims or warranty replacement

Loss Loss
%) No Loss %)
Lower Upper
Specification Specification
Limit Limit

(LSL) (USL)



Variation is Directly Related to Economic Loss

“Actually Loss Increases at an Increasing Rate as a Function of Process Variation”

Two Specifications Example

“Product Variation™

“Quality Loss Function”

Claim |
9 |\ 4
\\. y
-$) \ / (-$)
(m-A) Target (m + A)
Lower ( m ) Upper

Specification Limit

Specification Limit

One Specification Example

Total Loss ($)
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Large loss due to

non-conformance
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Young, T., N. André, and J. Otjen. 2015. Quantifying the natural variation of formaldehyde emissions for wood composite panels.
Forest Products Journal. 65(3/4):S82-S84.




Variation is Cumulative
“Must account for Entire System Variation and Reliability of System”

Run-time (Down-time |Reliability

[h] [h] [%]
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Galton’s Principle - Variation is Cumulative
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Variation is Cumulative

“Reduce System Variation by Focusing on Component(s) with Largest Variation”

Galton’s Principle - Variation is Cumulative of = 15 units

0.993 2 c3

:["Zl Subsystem A

Sir Francis Galton (1822-1911) [er ] [e2 ]
F. | 0.995 |
*Quantify the Components of Variance Flosss| [ F1 | | F2 | [ rF3 | [ Fe |
L

(X.Y independent) — Parallel System: e &2

Subsystem B
Var( X +Y) = VarX + VarY i 099)
(X.Y dependent): - Series System:
Var(X +Y) = VarX + VarY = 2Cov(X,Y) o2 = 10 units

C

or,
Var(aX + bY) = a?VarX + b?VarY =+ 2abCov(X,Y) Subsystem C

Oforar = OF + 05 + G5 =65 units




Role of Contemporary Analytics in e '
Manufacturing is Changing Rapidly! '




Why the Need for Industry 4.07

Status Quo (/s it OK?)

Data Fusion (Collect a Lot of Data,
much is not in a Useful Form)

Predictive Knowledge (How can it
help?)

“Survival in business is not compulsory”
W.E. Deming



Status Quo

“Delayed test data to operator — Like Driving Your
, Car looking in Rearview Mirror”

¢ Time delay of critical strength information from testing
lab is like driving your car ‘looking in the review window’

¢ |f operator assumptions due to ‘time delay were always
correct, there would be no loss

¢ Engineered panels and wood composite panels have annual losses due to rework and
scrap from 0.1% to 1.3%

¢ For amodern mill, that can equate to almost 1IMM lineal feet of waste and
opportunity costs (wood, resin, energy, labor, etc.)

¢ Millions of Euros and Dollars in loss



Process Modeling Not Possible without Relational Databases
“Plants collect a lot of data, but most data are not organized and aligned

Non-trivial Problem: Automated Data Fusion

Mills collect a lot of data, “data rich” but “knowledge poor”

Data Warehouse

Event Data Real-Time Data

Microsoft SQL Code Relational Database
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in a useful format for data mining, etc.”

Automated Data Fusion (Problem of Time Alignment)

Raw Refining Forming
Materials
f-x Fiber Flow t-4 t-2
\  Post Pressing ' Pre-pressing

Processes

Destructive testing lab

L[]

Statistical Value




LuUandiying the Key nelationsnips with Input variables and Froduct

IB

Process variable

Correlation

correlation

original index Process variable name with IB
121 DPCsnd_MPot_pAv_4_06 0.709958
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124 DPCsnd_MPot_pAv_4_09 0.660752
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217 DPCsnd_ThCt_pAv_1_22 0.642236
218 DPCsnd_ThCt_pAv_1_23 0.611288
329 RSV_Current_Board_Thickness 0.603462
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“Real-Time Process Modeling”
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Young, T M., R.V. Le6n, C.-H. Chen, *W. Chen, F.M. Guess, and *D.J. Edwards. 2015. Robustly estimating
lower percentiles when observations are costly. Quality Engineering. 27:361-373.

*Carty, D.M., T.M. Young, R.L. Zaretzki, FM. Guess, and A. Petutschnigg. 2015. Predicting the strength
properties of wood composites using boosted regression trees. Forest Products Journal. 65(7/8):365-371.

*Riegler, M., N. André, M. Gronalt, and T. Young. 2015. Dynamic simulation of the continuous flow of bulk
material during production to improve the statistical modeling of final product strength properties. International
Journal of Production Research. 53(21):6629-6636.

Young, T M., N.E. Clapp, Jr., EM. Guess, and C.-H. Chen. 2014. Predicting key reliability response with
limited response data. Quality Engineering. 26(2):223-232.



Ensemble Real-time Process Modeling

Problem: Reduce generalized error of “real-time” prediction by combining predictions from several models

)

and algorithms into an “ensemble’
8  Partial Least Squares

Ridge Regression

Neural Networks

Genetic Algorithms

Neural Networks

Bayesian Adaptive Regression Trees

Etc.
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Figl. Plots of Predicted 0.5 inches MOR (X 10° kPa) versus Actual MOR (X 10° kPa) under the first three best prediction models
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*Tian, N., Sun, S., Pei, Z. and T.M. Young. 2017. Improved Predictive Modeling of Wood Composite

Properties Using Bayesian Additive Regression Tree (BART). Wood Science and Technology. In Review
21



LUaNurying the Key relationsnips witn Input variabies anda Froauct
Attributes
“Real-Time Process — Ensemble Modeling”

Table 2 On-line validation results for IB and MOR by regression 18
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André N. and T.M. Young. 2013. Real-time process modeling of particleboard manufacture using variable selection and regression methods ensemble. European
Journal of Wood and Wood Products. (Eur. J. Wood Prod. Holz als Roh- und Werkstoff). 71(3): 361-370.

Kim, N., Y.S. Jeong, M K. Jeong, and T.M. Young. 2012. Kernel ridge regression with lagged dependent variable: applications to prediction of internal bond
strength in a medium density fiberboard process. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applications and Reviews. 42(6):1011-1020.



Product Optimization

“Response Surface Methodologies — Exploring Interactions”

Predict y as a function of x, that are represented by linear, quadratic and interaction terms in the model:
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Product Optimization

“Response Surface Methodologies — Exploring Interactions”

Optimum conditions were: 300 C peak temperature and a heating rate of 8.00 C/min.
The carbon aerogel achieved approximately 90.10 g/g of the normalized oil absorption
capacity despite a weight reduction percentage of 82%.

104=

(b)

o o, DRt A1

Heating rate (°Cimn)

Peak temperature (°C)

Meng, Y., X. Wang, X.,Z. Wu, S. Wang, T.M. Young. 2015. Optimization of cellulose nanofibrils carbon aerogel fabrication using response surface
methodology. European Polymer Journal. 73:137-148.

*Meng, Y., TM. Young, P. Liu, C.I. Contescu, Biaohuang, and S. Wang. 2015. Ultralight carbon aerogel from nanocellulose as a highly selective oil
absorption material. Cellulose. 22(1):435-447.



Product Optimization — Lignin Yield
“Central Composite Design - Response Surface Model’

Cellulose ,| Fikration  Isolated L Pceg, O X v
& 1 | T
ee—l )

Organic phase

Salid Aqueaus phase
I.M.ﬂ:m fraction "-s.,‘u 1

R e e =, Table. Total lignin yield and wt% lignin from fractionation of loblolly pine.
[ A x %
Liquid fraction N N\ % o Run # Lignin Lignin pygity®  Lignin yield Run# Lignin Lignin purity Lignin yield
Method 2 = low MIBK R isolated [g] [%] [wt %]° isolated [g] [%] [wt %]°
= [ 1 1 81.22 95.43 39.47 122 81.42 94 61 39.57
—rww w 2 98.40 94.30 47.82 13 162.62 90.35 79.03
= 3 96.19 95.52 46.75 142 76.27 95.26 37.07
. 4 732 94.80 4244 15 105.93 92.25 51.48
Liquid fraction 5 85.12 93.68 4137 16 103.33 92.93 50.22
(1000 ml) 6 84.74 92.07 41.18 17 88.97 93.64 4324
Solvent mixture 7 90.20 95.64 43.84 18 194.88 94.40 94.71
\ Methad 3~ spray drylng g 154.18 0422 74.93 19 110.61 89.40 53.76
- " 92 131.44 81.86 63.88 20 164.91 96.03 80.14
Spray dried : 5 102 71.16 94.19 34.58 21 119.03 96.79 58.28
g o 112 138.36 81.95 67.24 22 128.26 9435 62.33
* Center point runs; "Calculated as Klason + acid soluble lignin; {Lignin yields corrected for purity measurements
. . . . &> 5 < O N - o, - - s
Flowchart Of Ol’g anos OIV fraCtl Onatlon is 01 atlon pl’O cesses. :a.,(": *® o ‘,x-‘” Table. Total cellulose yield and wt% cellulose from fractionation of loblolly pine
Ny Y -
%l Run Biomass  Cellulose yield Cellulose  Run Biomass  Cellulose Cellulose
# output [wt %] purity [%] # output [g]  Yield [%] purity [wt %]
1 447.65 69.62 7218 12a 361.69 58.91 65.62
2 29285 477 63.34 132 165.87 27.02 73.99
. . . 3 460.22 74.96 76.19 142 338.80 55.19 61.78
Lignin yield [wt%] = 69.09155 + 7.272(Temperature) + 6.1305(MIBK Level) — 4 26397 43.00 5513 15 354.90 57.81 71.87
. . . . 5 408.63 66.56 70.48 16 183.79 2994 74.26
12.2016(Particle Size) — 5.6898(MIBK Level*Particle Size) 6 32515 52.96 6278 17 39743 64.74 70.61
7 42574 69.35 72.86 18 184.59 30.07 74.10
8 237.09 38.62 78.24 1% 327.81 534 70.97
9 160.20 26.09 53.60 20 211.68 34.48 80.70
102 376.78 61.37 64.27 21 271.71 44.26 68.41
112 159.36 25.96 57.70 22 180.39 29.38 57.03

* Centerpoint runs in experimental design; "Lignin yields corrected for purity measurements

Bozell, JJ., A. Astner, T.M. Young and T.G. Rials. 2017. Organosolv fractionation of loblolly pine (Pinus taeda). Optimization of lignin yields and thermal properties. Biomass and
Bioenergy. In Review.



Real-Time Sensing Technology

Problem: Development of automated real-time sensor systems for manufacturing applications, e.g., real-time
detection system for HCHO carcinogenic gases from wood composites, feedstock quality for Switchgrass, etc.

Absorbance
E . v}

“It’s not what you look at, it’s what you see”
Henry David Thoreau

‘Wavelengih [mm)

Quantifying Natural
Variation of Feedstocks

Predicting “Out of Control” Variation 26



Research Program

Ensemble
Process
Modeling

Advanced
Decision
Making for
Industry 4.0

Training
“Statistical
Thinking”

Product
Optimization

“It is not the strongest of the species that survive, nor the most intelligent, but the ones most responsive to change” p,.in

27
UT Institute of Agriculture, Center for Renewable Carbon, Knoxville, Tennessee



Statistical Training for Industry

Provide training for industry in Process Analytics, Statistical Process Control (SPC), Lean Methods, Data Mining, and Design of
Experiments (Trained more that 1000 people from more than 40 companies)

1;1:111.'”.-.
188118111

g
TICAL SEMINHES /
STATIS THE B10-BASED,

Industrial Partners:

8 Georgia-Pacific Corp. 8 Norbord Corp. 8 Footner Forest Products - Canada 8 Weyerhaeuser

8 Louisiana-Pacific Corp. 8 Langboard Corp. 8 Finsa Industries - Spain 8 Arauco North America
8 Boise Cascade Corp. 8 Georgia-Pacific Chemicals 8 Anderson Tully Corp. 8 Glanbia

8 Brown Forman Corp. 8 Hexion Chemicals 8 Huntsman Chemicals 8 Ocean Spray

8 J.M. Huber Corp. 8 Arclin Chemicals 8 Tolko Inc. 8 FEtc., EtCnnnnn....... o8



“The key is to be able to
detect the signal from
the noise”

G. Taguchi






