

MAX-CORECLT INTERNATIONAL BEAMS

Cross Laminated Timber (CLT) Manufacturing in the Southeast U.S. Steve Lieberman, PE

- In business for 22 years
- Two existing mills
- Manufacturer of solid flange wood I-joists

MAX-CORE **GLULAM**

MASS TIMBER SOLUTIONS COMPLEX

Building Size: 227,400 sq/ft Land Size: 84 acres

Economy

\$13 Billion Annual Industry

Industry

650 Forest Product Companies

Lumber Supply

22.9 Million Acres of Forest

Energy costs

Lower 25% Nationally

Transport Access

Railroad U.S. Highways Port

Workforce

47,000 Employed Skilled Labor Force

Alabama is No. 7 nationally in lumber production and No. 8 in wood panel production

Forestry is Alabama 's second largest manufacturing industry, ranking No. 1 in the U.S. in pulp production and No. 3 in paper production.

- Pioneers of CLT
- Global suppliers of CLT
- In business for 20 years
- Austria/UK/Portland

SUPPORT MAX-CORE CLT

Forest Products Laboratory

WHAT IS CROSS LAMINATED TIMBER?

Pyramidenkogel tower, Austria

CROSS LAMINATED TIMBER

X-LAM USA will be the first manufacturers of structural Southern Yellow Pine CLT.

SYP is one of the strongest species of lumber approved for CLT per the PRG-320.

RAW MATERIAL SPECIFICATIONS

Wood species:	Southern Yellow Pine							
Wood moisture:	12	%						
Width max/min	12/3.35	inch						
Thickness max/min	3/0.8	Inch						
Length max/min	16/8	feet						

CLT SPECIFICATIONS

Max Width	10 feet
Max thickness	12 inches
Max Length	52 feet
Number of layers	3/5/7/9

CROSS LAMINATED TIMBER

Width $\leq 10'$

CROSS LAMINATED TIMBER

CLT SPECIFICATIONS

5 MYTHS ASSOCIATED WITH CLT

MYTH 1: "CLT IS NOT IN THE BUILDING CODE"

Standard for Performance-Rated Cross-Laminated Timber

ANSI/APA PRG 320-2012

MYTH 2: "CLT IS MADE OF WOOD AND, THERFORE, EASILY CATCHES ON FIRE"

MYTH 3: "YOU HAVE TO BRING IN A SPECIALIZED CREW TO INSTALL CLT"

MYTH 4: "CLT IS BAD FOR THE ENVIRONMENT SINCE TREES MUST BE CUT DOWN"

MYTH 5: "CLT IS EXPENSIVE"

CLT PROCESS

Think CLT at the conception phase

- Requires substantial front end planning and collaboration between architects, engineers and developers to consider the following:
 - CNC precision
 - Mechanical, Electrical and Plumbing
 - Envelope
 - Connections
 - Transportation
 - Assembly
- Preplanning will save time and money during construction

MAX-CORE **CLT DESIGN PROCESS** Import

MAX-CORE CLT DESIGN PROCESS Draw

DESIGN PROCESS Export to CNC

1 Ly	procem (Internal Incernal) (semple1.3dg - (Load))																-			_		-	210 X
1 pa	Settings System Extre Window Help	51	E 9	2	-																		
0	08 8 8 7 6 8 8	-	a Ta chones			K I	5		S 10 Tests/sek	* <u>*</u> * C	Standard>	1											
	© Loeds √@ Wel_P1	II Desig Wall	gnation (na. Single n 1 (1)	ni Length 8250.0	i [mn Width [mm 10 2400.00	Heig 200	ht (mn Pos 00 2	fion (1	Origin nr Positionnin Ouer 1. standard 1 1	By Cen 0.00	ter dist X1 0.0	Trevnsil. (0	0.00	ensi (r 2 1 0 0	ransi, (r 2-4) 10	Part cent 1.00	Pert direc	5 Tool pe Set-out	et c poi				
		100	* * *	호난	•1•1 II [I*	1.1		1.1															
		IN.	Processing	Code	r (r Name (proc	Num	Single m	Macro	Tool	G41/G	42 On/Off	Pos	its Per	V SAA1	SA-0-1 [c	SA-Sele	K SAA2	SA-02	c M0	41			-
		11	4-030-3	030	Lap Joint	49	1(0)	3004	30: SewBlade @920/8x6	41	1	•2	1	90.000	90.000		90.000	90.000	0	-			
		12	4-030-3	030	Lap Joint	45	1(1)	3004	30: SawBlade @920/8x6	41	11	•2	1	90.000	-98.000		90.000	-90.000	0	4			
		23	4-030-3	030	Lap Joint	48	1(0)	3006	103 Pouter #40/200	0	1	•2	1	0.000	0.000		0.000	0.000	0	4			
		24	4-030-3	030	Lap Joint	49	1(1)	3006	103 Plotter #40/200	0	1	•2	1	0.000	0.000		0.000	0.000	0	-			
nhn		25	2-010-3	010	CM	39	1(1)	1006	30. SavBlade 0920/0x6	4141	1	×	1	90.000	-90.000		90.000	-90.000	0	-			
	Actualize all macros	2.6	1-010-3	010	CM	30	1(1)	006	30. Savblade 0920/0x6	4141	1	100	1	90.000	90.000		90,000	90.000	0				
	Peset[SHFT A]	12	1-017-1	017	Stort From	40	10	122	111 Slob #300/50	4142				0.000	0.000		0.000	0.000	0	A			
	Macro [SHIFT D]	50	4-032-2	032	Notch / Flab	43	1(1)	1382	111: Slab #300/50	4141	1	- 10	<u>.</u>	0.000	0.000		0.000	0.000	0	-			
	Tool	23	4-032-2	032	Notch / Rab	44	1(1)	1382	111: Slab #300/50	4141	1	• *		0.000	0.000		0.000	0.000	0	-			
	Mill angle	1 10	4-017-3	017	Slot Front	41	1(1)	1392	111: Slab #300/50	4142	1	-X	÷.	0.000	90.000		0.000	90.000	0	-			
	Clamp config	± 11	4-040-4	040	Delling	36	1(1)	454	103: Router #40/200	0	1	·Y	1	90.000	0.000		-90.000	180.006	0	-			
	ISO-code	112	4 - 040 - 4	040	Delling	37	1 (1)	1454	103. Plouter #40/200	0	1	·Y	1	90.000	0.000		-90.000	180.000	0	-			
	Al ISO-Code [SHIFT S]	1 213	-4-010-1	010	Longitudinal	47	1 (1)	1124	30. SavBlade @920/8x6	41.41		•Y	Ľ.,	90.000	100.000		90.000	180.000	0	_			-
											20	-	_	-		15					N		A.

MANUFACTURING

Digital Fabrication and CLT

CLT Manufacturing is automated through Computer Numerical Controlled (CNC) machines. This enables:

- Mass customization
- Accuracy/Precision
- Fully automated
- Extremely tight tolerances of walls, floors, openings for windows, doors and service channels.

Photos courtesy of KLH

MANUFACTURING Layup

MANUFACTURING Gluing

MANUFACTURING Press

MANUFACTURING CNC

MANUFACTURING

Photos courtesy of KLH

TRANSPORTATION/ASSEMBLY

"Rolling Process" through factory. Technical work is accomplished offsite by machine:

- Enables just-in-time (JIT) delivery to job site
- Panels are lifted by crane and set immediately
- Fast assembly is a main attribute of CLT
 - Assembly and sequencing arranged during preplanning
 - Outputs of 1,000 to 8,000 SF/day can be achieved with 2-8 man crew plus 1-2 crane operators

Photos courtesy of KLH

TRANSPORTATION/ASSEMBLY

Platform construction is typical of CLT buildings.

- Safer for construction crew
 - CLT floor panel virtually impenetrable
 - Less scaffolding
 - Lower insurance
- Floors bellow can immediately be finished
- CLT cores rise swiftly
- Construction can proceed year-round and is not inhibited by weather.

UBC Brock Commons, Vancouver. Structurlam

ASSEMBLY/SAFETY

Reduced waste, safe and clean site

- Less demanding of skilled construction trades like steel and concrete.
- Less waste due to prefabrication
- Cleaner site due to JIT delivery
- Less site disturbance
 - Quick, quiet, and requires less space
 - Ideal for urban and hard to reach sites

Forte Building, Australia. KLH

MAX-CORE **CLT** ENVIRONMENTAL ADVANTAGES

STADTHOUSE MURRAY GROVE Architect: Waugh Thistleton Location: London, UK

CLT/Mass Timber is inherently fire resistant.

 Additional layering of timber can act as fire protection, establishing a char-layer that insulates the structural section.

Photo courtesy of FPInnovations

FIRE RESISTANCE

Fire resistance of Mass Timber is well researched and documented

- Well known characteristics and methodology for determining fire resistance up to 2 hours.
 - US CLT Handbook
 - 2015 NDS
 - IBC 721
- U.S. Forest Products Laboratory has conducted recent fire tests with positive results

Photo courtesy of USDA

FIRE RESISTANCE

Table 16.2.1B Effective Char Depths (for CLT

with β_n =1.5in./hr.)

Required Fire	Effective Char Depths, a _{char} (in.)												
Endurance (hr)	lamination thicknesses, h _{lam} (in.)												
(111.)	5/8	3/4	7/8	1	1-1/4	1-3/8	1-1/2	1-3/4	2				
1-Hour	2.2	2.2	2.1	2.0	2.0	1.9	1.8	1.8	1.8				
1 ¹ / ₂ -Hour	3.4	3.2	3.1	3.0	2.9	2.8	2.8	2.8	2.6				
2-Hour	4.4	4.3	4.1	4.0	3.9	3.8	3.6	3.6	3.6				

CASE STUDY

CANDLEWOOD SUITES, Redstone Arsenal, Alabama

PAL PORTFOLIO	TYPICAL*	CLT	DIFFERENCE
Gross SF	54,891	62,688	+14%
Average # of Employees	18 (Peak 26)	10 (Peak 11)	-43%
Structural Duration (days)	123	78	-37%
Structural Man Hours	14,735	8,203	-44%
Structural Production Rate	460 SF/Day	803 SF/Day	+75%
Overall Schedule	15 months	12 months	-20%

Lendlease

Economic

- 37% Faster
- Cost Neutral to Metal Stud

Environmental

- 31% more efficent
- 1,656 tons carbon sequestered

Lendlease

Choosing cross-laminated timber becomes superior to conventional materials when a project experiences at least three of these constraints.

Pricing considerations:

- No shoring, no form work
- Smaller foundations
- Reduced waste management
- Finished surfaces
- Faster construction process
- Schedule (e.g. no curing, waiting time: 20%-30%)

CLT JOINTS & CONNECTORS

Assemblies

TYPICAL CLT EXTERIOR WALL ASSEMBLY

1. BRICK VENEER 2. 2" INSULATION BOARD 3. VAPOR BARRIER 4. 4 1/8" (105mm) CROSS LAMINATED TIMBER PANEL 5. STEEL SILL PLATE ASSEMBLY 6. MORTAR NET 7. NON-SHRINK DRY PACK GROUT 8. FLASHING 9. TERMITE SHIELD 10. FLOOR SLAB 11. FOUNDATION

60 IIC DESIGN

72 IIC ACHIEVED VIA FIELD TESTING

55 STC DESIGN 61 STC TESTED

MAX-CORE CLT CONNECTION Specialty

Rothoblaas X-RAD System

Images courtesy of Rothoblaas

WALL-CONCRETE CONNECTION

- 1. Moisture barrier
- 2. Angle bracket for shear and tensile forces
- 3. Pressure treated sill plate
- 4. Concrete component (wall ceiling, concrete slab)

CONNECTION Screw Types

INTERIOR/EXTERIOR WALL, CEILING

- 1. Screw connection from the outside
- 2. Screw connection from the inside
- 3. Shear force transmission along the joint and tension anchorage
- 4. Screw connection of ceiling with walls

MAX-CORE CLT CONNECTION Screws

CEILING JOINT ON WALL

1. Half lap joint on a wall

2. Notched joint on a wall

3. Butt joint on a wall

MAX-CORE CLT CONNECTION Screws

CEILING JOINT

- 1. Connection for shear transmission in the direction of the joint
- 2. Joint tape, if air tightness is required for fire protection
- 3. Plywood spline plate
- 4. Ceiling Panel
- 5. Type, diameter and distance of screw according to static requirements

CONNECTION Specialty

CEILING, ROOF TO WIDE FLANGE BEAM

Notes

- 1. Panel placed on lower flange
- 2. Connections with fully threaded or partially threaded screws are possible

MAX-CORE **CLT** CONNECTION Specialty

MAX-CORE CLT CONNECTION Lifting

CLT construction utilizes a variety of single use and reusable connections for panel assembly.

Image courtesy of KLH

Image courtesy of Rothoblaas

David Murakami Wood

MAX-CORE CLT CONNECTION Lifting

MAX-CORE CLT CONNECTION Lifting

MAX-CORE **CLT** ASSEMBLY TOOL KIT

Fig. 26 - Auger bits

Fig. 29 - Bits

Fig. 27 - Hole cutters

Fig. 19 - Chainsaw

Fig. 28 - Forstner bits

Fig. 33 - Rachet beam tensioner

Fig. 22 - Planer

Fig. 23 - Grinder

Fig. 24 - Sledgehammer

Fig. 31 - Levelling rod

Fig. 32 - Angle

EXAMPLE PROJECTS

BROCK COMMONS

UNIVERSITY OF BRITISH COLUMBIA

18-STOREY HYBRID MASS TIMBER STUDENT RESIDENCE

WOOD CONSTRUCTION:

START

Arbora Condos | 434 Units | Montreal, Quebec | Provencher_Roy Architects

Stadhouse Murray Grove 9-storey Apartment Building UK | Waugh Thistletor

Forte Living | 10 Stories Melbourne, AUS | Lendlease

Murau Brewery Logistic Hall | Graz, Austria | KLH

Photos courtesy of KLH

Photos courtesy of KLH

A SMARTER BUILDING

- Durable and long lasting when properly designed and planned
- Higher strength to weight ratio than steel and concrete
- Natural material
 - Aesthetic quality (tangible higher rent)
 - Moisture management
- Prefabricated solid panels
 - Negligible air infiltration
 - Significantly more efficient
- Healthy indoor environment
 - consisting of wood and non-toxic adhesive

Washington Latin School, Washington D.C. KLH

MAX-CORE **CLT** KEY ADVANTAGES

CLT is creating a paradigm shift within the building industry, it is much more than a new building material.

- Environmentally sustainable material
- Lightweight construction
- Fast erection time
- Extremely accurate panels and openings
- Maximum architectural freedom
- Reduced site traffic and waste
- Safer construction site
- Simplistic assembly process
- Fire resistant
- Versatility
- Inherent aesthetic quality

Hermann Kaufmann Austria

X-LANUSA

QUESTIONS?

Steve Lieberman, PE

Senior Product Engineer 941-376-1613